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Faraday waves : rolls versus squares 
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Weakly nonlinear capillary-gravity waves of frequency w and wavenumber k that are 
induced on the surface of a liquid in a square cylinder that is subjected to the vertical 
displacement a, cos 2wt are studied on the assumptions that : 0 < S < ka,, where 6 is the 
linear damping ratio ; the dominant modes are cos kx and cos ky, where x and y are 
Cartesian coordinates in a horizontal plane. The formulation extends those of 
Simonelli & Gollub (1989), Feng & Sethna (1989), Nagata (1989, 1991) and Umeki 
(1991) by incorporating capillarity, cubic forcing and cubic damping. The results are 
also applicable to a laterally unbounded fluid, but the basic symmetry then is 
hypothetical rather than imposed by the boundaries. Canonical evolution equations 
for the modal amplitudes are determined from an average Lagrangian. The fixed 
points of the evolution equations comprise: (i) the null solution; (ii) an orthogonal pair 
of rolls described by either cos kx or cos ky ; (iii) an orthogonal pair of squares described 
by either cos kx + cos ky or cos kx - cos ky ; (iv) coupled-mode solutions for which both 
modes are active and neither in phase nor in antiphase. The solutions for squares are 
isomorphic to those for rolls through a linear transformation of the coefficients in the 
Hamiltonian. The fixed points for rolls and squares lie on separate loci in an 
energy-frequency plane that intersect the null solution at a pair of pitchfork 
bifurcations, one of which is definitely supercritical and the other of which may be 
either subcritical or supercritical. The parametric domain of the various solutions 
includes subdomains in which squares/rolls are stable/unstable and conversely. 
In the limiting case of deep-water capillary waves in the threshold domain 
0 < ka, - 6 < 8a3/9 all of the rolls and coupled-mode solutions are unstable, while 
squares are stable except for fixed points between the subcritical bifurcation (if it 
exists) and the corresponding turning point. 

1. Introduction 
I consider here weakly nonlinear, parametrically excited, standing waves (Faraday 

waves) in either a square cylinder of side b or a laterally unbounded (in the sense that 
the effects of lateral boundaries are negligible) body (slab) of water of ambient depth 
d o n  a horizontal lower boundary that is subjected to the vertical displacement 

Z" = a, cos 2wt .  (1.1) 

The essential parameters, which measure depth, drive, damping, detuning (from linear 
resonance) and capillarity, are kd, 

w--Qk - k21i 
0(1), CT = ~ 

6 
€ €0 1+k2F,'  

e-ka,tanhkd< 1, a = - <  1, p=-- 

(1.2 a-d) 
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where k is the basic wavenumber, S is the linear damping ratio of the wave, 

ug = (gk + f k 3 )  tanh kd = gk( 1 + k Z Q  tanh kd, (1.3) 

f is the kinematic surface tension, and I* = ( f ' / g ) i  is the capillary length. The lateral 
boundary condition determines k = x /b ,  and hence also O J ~ ,  for the square cylinder, but 
k is determined a pviori for the slab only within 1 +U(t)  through the restriction 
/3 = U(1). I follow Simonelli & Gollub (1989), Feng & Sethna (1989), Nagata (1989, 
1991) and Umeki (1991) in focusing on a degenerate pair of modes that, by virtue of 
the square symmetry, differ only by a rotation of frf and extend their formulations 
by incorporating capillarity, cubic damping and cubic forcing. 

Faraday waves are reviewed by Miles & Henderson (1990). They appear at a 
threshold for which E = 6 (linear excitation balances linear damping) and p = 0 
(linear inertial forces balance linear restoring forces) independently of mode shape. If 
6 < E < 1 and B = O(1) a stationary wave of U(U,,/E~) amplitude, for which cubical 
inertial and capillary forces balance the third-order imbalance among the linear forces, 
is possible. This balance constrains the frequency and amplitude to lie along a certain 
resonance curve and therefore determines both for the cylinder but not for the slab; 
however, this resonance curve is open (has no maximum) if nonlinear damping is 
neglected (cf. the open resonance curve for a simple nonlinear oscillator if linear 
damping is neglected). Milner (1991) suggested that cubic damping closes the 
resonance curve for 0 < e - d = O(S3) but overlooked the comparable role of cubic 
forcing (Miles 1993). It is implicit in these last two papers that the cubic damping is 
positive; in fact, cubic damping or cubic forcing or both may be negative (see below). 

There remains the problem of pattern selection - i.e. the selection of a particular 
mode or combination of modes for the cylinder or the selection of both wavenumber 
and spatial pattern for the slab. The constraint p = O(1) restricts the choice for the 
square cylinder to some linear combination of the degenerate, dominant modes cos kx 
and cos ky ; in particular, these basic modes describe orthogonal rolls$, while 
cos kx + cos ky and cos kx- cos ky describe orthogonal squares with diagonal nodal 
lines. These patterns for the square cylinder also are available for the slab, but the 
wavenumber remains undetermined (in the present formulation) and the orientation is 
arbitrary (although it may be determined by distant boundaries). Moreover, hexagonal 
and other regular polygonal patterns may be possible for the slab, although they do not 
appear to have been observed. (The analysis of hexagonal symmetry requires three 
primary modes and six secondary modes, in contrast to two and three, respectively, for 
square symmetry.) Ezerskii et al. (1986) implicitly assume that, for capillary waves, 
squares dominate rolls. Milner (1991) allows for any regular polygonal pattern of 
capillary waves and concludes that squares dominate rolls and hexagons ; however, he 
does not allow for detuning (p + 0),  which, in the present analysis, implies parametric 
domains in which rolls are stable and squares are unstable. None of Ezerskii et al., 
Milner, nor Miles (1993) provides for the instability of a particular mode with respect 
to perturbations of its complement - e.g. the instability of coskx +cosky squares with 
respect to cos kx- cos ky perturbations. 

My formulation follows Miles (1976, 1984, 1993) and Miles & Henderson (1990, 

t Simonelli & Gollub, Feng & Sethna and Umeki allow for detuning of this degeneracy by 
considering rectangular cylinders of aspect ratio close to one. 

$ The appellation roll for what an oceanographer would call a straight-crested wave is perhaps 
inappropriate for a surface wave, but it appears to be established and does offer the virtues of brevity 
and, in the present context, alphabetical proximity to square. 
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hereinafter referred to as MH). In 32, I pose a normal-mode expansion of the 
free-surface displacement that comprises the primary modes = 4 2  cos kx and+, = 

42cos  ky and those secondary modes +m for which ($1 $m +.,> + 0 (( > denotes an 
x, y-average) for I, m = 1 or 2. In 33,I  choose these modes as the basis of an average- 
Lagrangian formulation, modified to incorporate linear damping, in which r,(t), the 
amplitudes of the +%, are slowly modulated sinusoids with carrier frequency w for the 
dominant modes and 20  for the secondary modes. This leads to a set of canonical 
evolution equations for ?;I~ and y Z .  I then obtain an alternative formulation in which the 
primary modes are $, + +, and and $2, i.e. squares in place of 
rolls, through a canonical transformation of the Hamiltonian system. These alternative 
formulations are isomorphic, and the solution for rolls yields the solution for squares 
through a linear transformation of the coefficients in the Hamiltonian. 

The fixed points (stationary solutions) of the evolution equations comprise: (i) the 
null solution; (ii) a pair of orthogonal roll patterns; (iii) a pair of orthogonal square 
patterns; (iv) coupled-mode solutions, for which both $, and +, are active and neither 
in phase nor in antiphase. I determine the resonance curves for, and the stability of, the 
rolls and squares in $4 and the coupled modes in 35. The null solution loses stability 
to either rolls or squares at a pair of pitchfork bifurcations. The fixed points for the 
rolls or squares lie on separate straight lines in an energy-frequency plane that 
terminate on these bifurcations. The two lines from the subcritical bifurcation are 
unstable (loci of unstable modes). Each of the two lines, R (rolls) and S (squares), 
from the supercritical bifurcation typically (the exceptions being associated with 
the proximity of a Wilton’s-ripple resonance) comprises a stable and an unstable 
segment. The stable/unstable segment of R/S  is contiguous to the null solution for 
0 < cr < 0.210 (.- = 0 for pure gravity waves) and conversely for < cr < 1 (g = 1 for 
pure capillary waves). The overlap between the stable segments of R and S is small, so 
that either rolls or squares tend to be definitely selected at a particular frequency. The 
bifurcations that separate the stable and unstable segments of R and S are connected 
by the locus of the coupled-mode solutions. The coupled-mode locus may have Hopf 
bifurcations, which suggests a possible transition to chaos (cf. Nagata 1991) without 
the spatial modulation postulated by Ezerskii et al. (1986) and Milner (1991) (although 
spatial modulation remains important in other respects). 

The analysis in $04 and 5 assumes E - S  9 6 and is not uniformly valid near the 
threshold c = 8. In $6 I obtain uniformly valid approximations to the resonance curves 
on the assumption that cubic damping exceeds cubic forcing. The bifurcations from the 
null solution then are connected by two parabolas, one for rolls and one for squares. 
That bifurcation which is supercritical for E-8 9 S3 remains supercritical for 
s--S = O(s3), but the second bifurcation may be either subcritical (in which case the 
parabola has a turning point) or supercritical. In the limiting case of deep-water 
capillary waves all roll solutions are unstable for (s--S)/S3 < 3.59, while all square 
solutions except those on that segment of the parabola between the subcritical 
bifurcation and the turning point are stable for (e -  S)/S3 < 8/9. The resonant maxima 
tend to infinity, and each of the parabolas tends to the pair of straight lines determined 
in $4, for E-8 P S3. All of the coupled-mode solutions are unstable for E-6 = O(P). 

The resonance curve does not close if cubic forcing exceeds cubic damping. Closure 
then may be possible through a fifth-order analysis, but the requisite analysis is 
intimidating. 

The theoretical calculation of damping is unreliable except in rather special cases, 
such as a deep, laterally unbounded, uncontaminated fluid, which, following Milner 
(1991), I consider in Appendix A. The linear damping ratio may be defined as the 

- in place of 
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measured threshold of e, but I know of no measurements of cubical damping that are 
adequate for comparison with the present predictions. 

I know of no experimental data that are adequate for a quantitative comparison with 
the present predictions of the stable domains of rolls and squares in either square 
cylinders or slabs. D. Henderson (personal communication) has observed squares, but 
not rolls, in the Faraday-resonant domain of the dominant mode in a square cylinder, 
but she did not undertake a systematic search of that domain. Crawford, Gollub & 
Lane (1993) report observations of stable squares and transient rolls in the resonant 
domains of the primary modes cos n k x  and cos nky for n = 2 and 3, but their frequency 
range excluded n = 1. 

Edwards & Fauve (1992) report stable rolls of roughly 1 cm length ( 2 x l k )  in a 12 cm 
circular slap of a glycerine solution with a kinematic viscosity of 0.7 cm2 s-l and an 
excitation frequency of 2w/2x = 60 Hz; however, the corresponding Stokes damping 
ratio, 2vk2/o, is roughly lo2, whereas the present formulation assumes 8 < 1. 

Fauve et al. (1992) report stable rolls at the liquid-vapour interface of carbon 
dioxide close to its critical temperature, but the present analysis is not directly 
applicable to this configuration. 

2. Normal modes 

the moving container in the form 
Following MH tj 2.1, we pose the free-surface displacement in the reference frame of 

dx7 t )  = Tn( t )  $n(x;kn), (2.1) 

where the $, constitute a complete set of orthogonal modes, normalized according to 
<$m $,) = 8,,, ( ) signifies an average over x, Sm, is the Kronocker delta, k ,  are the 
modal wavenumbers, v, are the modal amplitudes, and repeated dummy indices are 
summed over the participating modes except as noted. We choose 

$, = (2  - do$ (2  - 8oJi cosjkx cos lky, k ,  = (.I” + lz)i k ,  (2 .24  b) 

inwhichncornprehendsthecouplet(j,I),j=O,l, ..., 1=0,1,  ...;1C.,= 1 ( j = l = O ) i s  
excluded by conservation of mass. Our primary modes are 

9, = 2/2~0skx,  $2 = 2 / 2 ~ 0 s k y  (k, = k, = k). (2.3a, 6) 

The corresponding secondary modes, yk,, which are determined by the requirement 

‘Lmn (1C.t 3 m  $n> =I= 0, ( I ,  m) = ( 1 7  117 (1,2),  (2,117 (2 ,2) ,  (2.4) 
are 

$3 = 2/2  cos 2k.x, $, = 2/2  cos 2ky, $5 = 2 cos kx cos k y  

(k,  = k, = 2k, k, = 1/2k), (2.5 a c )  

1 1 

and $2 describe rolls with crests parallel to they- and x-axes, 

for which 

C,,n = -’n,, ‘22% = -~ j ’n47  ‘12, = Czln = 8,s. (2.6 0-C) 
4 2  

The primary modes 
respectively. The composite modes (cf. Rayleigh 1883) 
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where (2.8 a-c) 

describe orthogonal square patterns with axes inclined at in to those of x and y and 
have diagonal nodes in the square 0 < x, y < n/k .  

3. Evolution equations (kd % 1) 
We pose the slowly modulated amplitudes of the primary modes in the form 

y n  = 2.5%-1 tanh k4pn(7) cos ot + q , ( ~ )  sin wt]  (n = 1,2), 7 = ewt, (3.1 a, b) 

where E = ka,tanhkd, (1.2~).  Proceeding as in Miles (1976, 1984) and MH $2, we 
construct (in Appendix A) the average Lagrangian (A 14) and incorporate linear 
damping to obtain the evolution equations 

(3.2a, 6)  

where, here and subsequently, error factors of 1 +O(E)  are implicit, p ,  = dp,/d.r, 

D = a,, en, H = I( 2 PnPn - q n  qn) +Pn en + A m ,  em en +W2, (3.3a, b) 

e n  X P ~  + 4 3 ,  T ~1 qz-pz 41, (3.4a, b) 

01, = a, = a and PI = P, = are defined by (1.2b, c), A,, = A,, = A ,  A,, = A,, = C, 
and B are given by (A 17), repeated indices now are summed only over 1 and 2, and 
we have omitted cubic damping and forcing (which are incorporated in $6). The term 
+(p,p,-q,,q,) in (3.3b) is derived from the potential energy associated with the 
acceleration f0 and represents the parametric excitation, the term ,8, en represents the 
residue of the second-order (in amplitude) components of the Lagrangian after 
allowing for the proximity to resonance, and the remaining terms represent the quartic 
components ($Br2 is the dimensionless angular momentum of the fluid motion, which 
enters the calculation through the kinetic energy). 

The deep-water limits ( k d t  m) of (A 17) yield (see figure 1) 

(3.5a: b) 

1 i(3-22j2)’ 
1+0- 2d2-1 -g ’  

c= \\2-1+$0-+-- (3.5c) 

where 0- = k212,/(1 +kZF,) (3.6) 

is a measure of capillarity. B varies monotonically from - 3 to - 2.75 and C from 1.40 
to 1.65 as 0- increases from 0 (gravity waves) to 0- = 1 (capillary waves). The 
corresponding limits of A are 1 and 2.13, but A = m at u = 5, near which the present 
formulation (in particular, the hypothesis that the primary modes 1 and 2 dominate the 
secondary modes 2 and 4) fails owing to the resonances between modes 1 and 3 (k, = 
2k1 and w3 = 2ol, corresponding to Wilton’s ripples) and 2 and 4, which we exclude. 

The canonical transformation 

(3.7a, b) 2/2p, = P , f P , ,  d2q,  = 41fq% 
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3 

-ll -2 , \ ,  I I 

CT 

FIGURE 1. A ,  B and C for kd 4 1, as given by (3.5). 

where alternative signs are vertically ordered, implies, through (2. I), (2.7) and (3.1), 

(3.8a, b) 

for the primary modes in (2.1) and carries (3.2)-(3.4) over to isomorphic forms in 
whichp,, p z ,  q,, q2, A,  B, C, respectively, are replaced byp,, p-, q+, q-, 

d2r+(4 = rl(0 * ra(0, 71 $1 + 7 2  $2 = r+ $+ + r- $- 

A ,  = X A  + C),  B+ = B+ C - A ,  c+ = i(3A - C). (3.9a-c) 

The introduction of action-angle variables through the canonical transformation 

p n  = (2en)f cos o,, qn = (2en)t sin 8, (3.100, b) 

yields (3.11 a, b) 

and H = en cos 28, +/?(el + e,) + Ae, e, + 2e1 e,[Bsin2 (8, - 8,) + C]. (3.12) 

Substituting (3.3a) and (3.12) into (3.11), we obtain 

t ,  + 2ae, = 2e, sin 28, - 2Be, e, sin 2(8, - O,), 

P,  + 2ae, = 2e, sin 26, + 2Be1 e, sin 2(8, - O,), 
0, = /l+ cos 28, + 2Ae, + 2[B sin2 (0, - 8,) + C ]  e, 

8, = p + cos 28, + 2Ae, + 2[B sin2 (8, - 0,) + C ]  el. 

(3 .13~)  

(3.13b) 

(3.13~) 

(3.13d) and 

4. Single-mode fixed points 
The fixed points of (3.13) comprise: (i) the null solution e, = e, = 0,  which is stable 

if and only if pz > 1 -2; (ii) rolls for which e, = 0 and their complements for which 
el = 0 ; (iii) squares for which e, = el and 8, - 8, = 0 and their complements for which 
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Regime U A A + C  A - B - C  K e c  K+ ec+ 

+ 
+ 

- (i) (0,0.210) + + + + + 
(ii) (0.210,0.2729) - 

(iii) (0.2729,0.2742) - - - - 
(iv) (0.2742, j) - - - - 
(v) (i, 1) + + + + + + 

- - - + + 
+ - + 

+ + - 
- 

TABLE 1. Parametric domains for single-mode fixed points for kd $ 1 .  (U = 0.210,0.2729 and 0.2742 
are determined by the zeros of A ,  A + C and A - B -  C,  respectively, and u = 5 is determined by the 
resonance between the primary mode and its second harmonic.) 

8, - 8, = +n; (iv) coupled-mode solutions, for which el ,  , > 0 and 8, - 8, + 0 or f 7t. 
This section deals with the single-mode fixed points (ii) and (iii); coupled-mode fixed 
points are considered in $5. 

Letting el = 8, = e2 = 0 in (3.13a, c), we obtain 

el = (2A(-'(+/3,-/3Y), sin28, = a, cos28, = r/3,Y, (4.1 a-c) 

where /3, = (1 -a,)t, Y E sgnA, (4.2a, b) 

and, here and subsequently, the upper/lower alternatives correspond to the 
upper/lower branches of the resonance curve in a @, e)-plane (e EZ el +e,). The 
upper/lower branch joins the null solution at a super/subcritical pitchfork bifurcation 
at /3 = f p, 9. We refer to this solution as R, and to its complement (1 * 2) as R,. 

A linear stability analysis (cf. Nagata 1989), based on small perturbations of p n  and 
q, proportional to exp (h), implies that mode-1 and mode-2 perturbations are linearly 
independent and yields the respective characteristic equations 

A2+2ah+/1, = 0 ( n  = 1 or 2), (4.3) 

where A ,  = k 81AIP, e, A, = 4&3, e[_+ 1 -(e/e,)l, (4.4a, b) 

K = ( C - A ) Y ,  e , = P , ( A - B - C ) - ' Y .  (4.5a, b) 

Stability requires A ,  > 0. It follows from (4.4~)  that the upper/lower branch of the 
resonance curve (4.1 a) is stable/unstable with respect to mode-1 perturbations. It 
follows from (4.4b) that if K 3 0 the upper branch is stable/unstable with respect to 
mode-2 perturbations for e /e ,  < 1 or unstable/stable for e /e ,  > 1 (e, need not be 
positive, but e < 0 is inadmissible). 

The fixed points of (3.13) for e, = el and 8, = 8, and their stability are determined 
by (4.1H4.5) through the canonical transformation (3.7) and (A ,  B, C) +- (A+ ,  B,, C+), 
where A,, ... are given by (3.9). In particular, 

e, = IA+CI-'(+/3,-/3%), Y+ = sgn(A+C), (4.6a, b) 

e,+ = -El/?, Y+. (4.7 a, b) 

We refer to this solution as S+ and to its complement as S-.  
The parametric domains of the above modes for kd % 1, so that A ,  B and C are given 

by (3.5), are listed in table 1. Resonance curves for CT = 0 and 1, which are 
representative of regimes (i) and (v) of table 1, are plotted in figure 2. 

The results in this section reduce to those of Nagata (1989) for his 'single' (roll) and 
'mixed' (square) modes if CT = 0, for which he gives comprehensive stability graphs for 
finite kd. 

K+ = ( A  - C) Y+, 
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0.5 

0 

PIP* 
FIGURE 2. The upper branches of the resonance curves R,, S+ and CM, as determined from (4.1 u), 
(4 .6~)  and (5.1 c), respectively, for a = 0.1 and (a) cr = 0, (b) cr = 1. The solid/dashed segments are 
stable/unstable. The extensions of CM above R, in (a) and S, in (6) disappear for CL > 0.260 and 
a > 0.272, respectively. 

5. Coupled-mode fixed points 
The fixed points of (3.13) for el,2 > 0 are determined by (cf. Nagata 1989) 

j3 = - ( A + B + C ) e ,  C O S ~ ~ , , ,  = B[y2ef(1+,u-y2)fl, (5.1 c, d)  
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1 .O 

0.8 

0.6 

YC? Ynl 

0.4 

0.2 

0 0.2 0.4 0.6 0.8 
0 

.o 

FIGURE 3. The terminal values y: (5.3) (-) and y:7L (5.46) (---) for a = 0.1 (lower curves) 
and CL = a (upper curves). 

where y = cos(8,-8,), p = ( C - A ) / B .  (5.2a, b) 

It suffices to choose sgn y = sgn ( A  - C), so that e, < el (the complementary solution, 
for which e, > el, may be obtained by interchanging the subscripts 1 and 2), and to 
regard y* as a control parameter with the admissible range [y:, 11, where (see figure 3 )  

(5.3) 

is determined by the constraint e2 
The locus CM of the coupled-mode fixed points in the (p, e,,.e,)-space projects on the 

straight line (5.1 c) in the (P,e)-plane and terminates at pitchfork bifurcations at 
e = e, (y = ye) on R, and e = ec+ (y = 1) on S+ (see figure 2). It has a turning-point 
maximum at 

0 (e >f). 

if and only if < y t  < 1 (see figure 3 ) ,  which requires either (see figure 4) 

1 

a2 < = a! < -2 o r p  > 0)  or ct.2 < -$ = a: (-2 < p < 0). 
1+P 

(5.5a, b) 

CM then has two branches; CM,, which is traversed from the pitchfork bifurcation at 
e = e, on R, to the turning point at e = em as y increases from 7, to ym, and CM+, 
which is traversed from the turning point to the pitchfork bifurcation at e = e,, on S ,  
as y increases from ym to 1. The turning point coalesces with the pitchfork bifurcation 
on S ,  for y m  = 1 (K = a+), and if ym > 1 the single branch CM, is traversed from e, 
to e,, as y2  increases from y: to 1. The turning point coalesces with the pitchfork 
bifurcation on R, if ym = y, (a = KJ, and if ym < ye the single branch CM, is traversed 
from e, to e,, as y2 increases from y," to 1. 
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1 .o 

0.8 

0.6 

a 

0.4 

0 0.2 0.4 0.6 0.8 1 .o 
Q 

FIGURE 4. The critical values of a, as given by (5.5alb) to the right/left of the cusp. 

The stability determinant for small perturbations about the fixed point(s) (5.1) is 

d(h) = h4 + 4 d 3  + (2b + 4a2) h2 + 4abh + c (5.6a) 

(5.6b) = [A2 + 2cd + b + (b2 - c);] [A2 + 2nh + b - (b2 - c):], 

where 
-2[A -B- C+ y2(B+ 2C)l (1 -a2) (y2 -7,") 4A(A -B- C) a2(1 - y 2 )  

( A  - C)2 y2 
b =  + 

B(1 -Y,2)Y4 
(5.7a) 

The necessary and sufficient conditions for stability are 

b 2 0, c 0, h b2+4a2b-c 2 0. (5 .8 a-c) 

If (as we henceforth assume) kd 9 1 ( A  + B + C ) / ( A  - C) > 0 for all a, and c changes 
The condition h = 0 with b, c > 0 implies a Hopf bifurcation. 

sign at y = y,(e = e,), y = y,(e = em) and y = l (e  = ec+). If either 

7," < y2 < y t  or yk  > 1 c < 0, 

and all of CM, is unstable. We therefore need consider further only the stability of 
CM,, for which either yk  < 7," < y2 < 1 or 7," < 7; < y2 < 1 ,  so that c > 0. 

It follows from (5.7a) that (for y," < y 2  < 1 )  b > 0 if A > 0 (a  < 0.210 or CT > $) 
and b < 0 if A - B-  C < 0 (0.2742 < y2 < i); accordingly, b = 0 is possible only if 
0.210 < v < 0.2742, in which domain I(A-B-C)-(A+C)I = IB+2CI 5 and 
we may approximate (5.70) by 
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This admits the single zero 

(5.10u, b) 
4A Ca2( 1 - 7;) 

y2 = 2Y: =YE, K 
1 + K +  [( 1 + K)' - 4 ~ y $  - ( A  - (1 - 2) 

(so that b < 0 for 

a' -4 y2 < 1 ,  in which domain 

< y < yb) if and only if A < 0. 
Analytical approximations to the zeros of h appear to be possible only if 

A-B-C B+2C 4(A-C)(A+B+C) 
B ) z { [ 1 + ( A - B - C ) y 2 ]  - (A-B-C) '  

(5.11) 

A necessary condition for the zeros of (5.11) to be real is A < 0. Invoking 
IB+2CI -4 1 in this domain (see above), we obtain the approximations 

C2y4h = ( A  + C), -4(A - C), y2( 1 - 7,) + O(a2) (5.12) 
and y;* = ;& (C- A)-l ( - A C $  + O(a2) (5.13) 

for the Hopf bifurcations. Note that each of y:, 7: and 7; is O(a2), and hence that 
b, c > 0, for 7;- < y2 < yi+. The zeros yh+ and yh- coalesce, and the Hopf bifurcations 
disappear, as A t 0; they tend to 1 and 0, respectively, as A + C+ 0 (but the assumption 
y2 -4 a2 then is violated by y;-). A numerical investigation suggests, but I have 
not proved, that h > 0 for all a in (0,l) if A > 0 -- i.e. for either 0 < cs < 0.210 or 
$ < cr < 1. But Nagata's (1 989, 199 1) numerical examples imply that Hopf bifurcations 
exist for a = 0 and kd w 1. 

6. Threshold analysis 
Cubic forcing and damping are significant in the threshold domain 0 < 1 -a = O(e2) 

or, equivalently, p.+ = O(F), in which first-order forcing and damping almost balance. 
The approximations (3.3) and (3.12) then must be augmented to obtain (cf. Miles 1993) 

and 
D = a, en +A",, em en = a(el + e,) + A"(e: + ei) + 2ee1 e2 (6.1) 

H = en cos 28, + p(e, + e2) + Ae,  en + 2e, e2[B sin2 (0, - 8,) + C ]  

+ 2P(e: cos 28, + ei cos 28,) + 2Qe, e2 (cos 28, +cos 28,), (6.2) 
where : A" and e are derived in Appendix B under rather limiting assumptions but may 
have to be determined empirically; P,, = P,, = P and Plz = P,, = Q are given by (A 18) 
and have the limiting forms 

P,, = P2, Q = 2(2 4 2 -  3)  E (kd % 1). 
2e 

P,, = PZ2 = P = ~ 

1-9a2' (1 + cr) (2  4 2  - 1 -a) 
(6.3a, b)  

el + 2ae, = 2e1[( 1 + 2Pe, + 2Qe.J sin 28, -Be, sin 2(8, - 8,) -2& - 2ce,], ( 6 . 4 ~ )  

6, = /3 + ( 1  +4Pe,) cos 28, + 2Qe,(cos 28, + cos 28,) + 2Ae, + 2[B sin2 (8, - 8,) + C ]  e,. 
(6.4b) 

and their complements, which follow from the interchange of the subscripts 1 and 2. 

en = p* &,(T), 8, = $c+,!& O,(T), T = & T, 9 = p/p*, (6.5a-d) 

Substituting (6.1) and (6.2b) into (3.11), we obtain (cf. (3.13)) 

We now re-scale (6.4) according to 
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and let 1 --a J, 0 to obtain (where &% = d&JdT) 

= {1-4[2&;+ & 2 + B & 2 ( 0 1 - 0 2 ) + 0 ~ ] } ,  0, = @+A&l+ C&.,, (6.6a, b) 

a = (A"-P)/P,, = (C-Q)/P*. (6.7a, b) 

and their complements, where error factors of 1 + O(1 -a) are implicit and 

Eliminating 0, and 0, from (6.6a, b) and their complements, we obtain 

j1 = &,[l -(B+2A&l+2C~2)2-4(A-C)B(&l-&J~2-4A'l-4C&2] (6 .8~)  

and €. = €J1 -(W+2A&2+2C~l)2+4(A-C)B(&l-&2)&l-4~&'-4~&J. (6.88) 

The fixed points of (6.8) may be classified as in 54. Rolls are determined by (cf. (4.1)) 

(B+~AC$)~+~ALY = 1 (g2 = 0), (6.9) 
and its complement, to which we refer as R, and R,. It suffices to consider A > 0, since 
changing the sign of A is equivalent to changing the sign of 93. If 2 > 0 (third-order 
damping exceeds third-order forcing) (6.9) is a parabola in a (B, &)-plane (see figure 5) ,  
joins the null solution at a supercritical pitchfork bifurcation at 9 = 1, has a maximum 
at 

OJ = -gAi-l ,  & = i p =  4 - &Inax, (6.10~1, b) 

and re-joins the null solution at a pitchfork bifurcation at W = - 1 that is 
sub/supercritical for a 5 A .  The subcritical bifurcation is accompanied by a turning 

If 121 + 1 (p* $ s), A& may be neglected in (6.9), which then comprises the two straight 
lines of (4.1 a). 

If a < 0 (third-order forcing exceeds third-order damping) the parabola (6.9) does 
not close in & > 0. It is possible that the retention of fifth-order forcing and damping 
could close the resonance curve for a < 0, but the analysis would be both tedious and, 
for the damping, of questionable significance. 

Small mode-1 and mode-2 perturbations of (6.9) are linearly independent, as in 94. 
The solution is stable with respect to mode-1 perturbations except for states between 
the subcritical bifurcation at 93 = - 1 and the turning point (6.1 I), which are unstable. 
The stability with respect to mode-2 perturbations proportional to exp (AT) is 
determined by 

(6.12~) 

(6.12b) 

where the upper/lower sign in (6.12b) corresponds to points on the right/left of the 
maximum (6.10). The transition points, at which h = 0, correspond to the intersections 
of R, and CM (see (6.22~) below) and are given by (cf. (4.5b)) 

& = (A-B-C)~1{%'9i-[l-~2(l-92)]~} €c+, - (6.13) 

h = 1 -WZ- 4(e+ CB)  d + 4(AB- BC- CZ) 6 2  

= 4[2- Ck ( A -  C) (1 - 4 k ) i ]  &-4(A - C) ( A  - B- C )  g2, 

where a-e A - C  2a %=- 
A - C '  (6.14a, b) 

and €c.- > 0 if and only if %' > 1. %' is proportional to, while 9 is independent of E/P*.  
We assume that %' > 0, for which kd % 1 and CT > are sufficient. The upper transition 
point gC+ moves from e,//3* (see (4.5)) for %j = 0 through the maximum (6.10) for 

(6.15) % = [2(1-9)]" EE Vm 
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FIGURE 5. The threshold resonance curve for rolls (RJ, squares (3,) and coupled modes ( C M )  with 
u = 1 and (a) ~/ /3*  = 0.266 (W = I) and (b) = 0.8. The solid/dashed segments comprise 
stable/unstable states. 
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FIGURE 6. The critical values of E/P* for which V = V,,, A = A ,  V = V,,,, and A+ = A,. 

and (if A < A )  the turning point (6.1 1) for 

%=(1-9)-1[-+( 1 + 9  A + B + C 2 - f  2A ) ]  = v T p  

1 - 9  
(6.16) 

and joins the lower transition point gC.- for 

v = (1 -@)-i = v* (9 < l), (6.17) 

at which point CM is tangent to R,. All of R, is unstable for $? > vTP, and CM does 
not intersect R, if % > %*. If 2 > A the turning point disappears, and all of R,  is 
unstable if %? > 1. The values of E/P* at which %? = vTP (so that all of R, is unstable) 
and A = A are plotted in figure 6. 

The preceding results for rolls may be transformed to the corresponding results for 
squares through (3.7), (3.9) and (note that P+ = Pin  Miles (1993) with kd = 00 therein) 

P+ = XP+ Q), Q+ = i (3P-  Q), (6.18a, b) 

as in $4. In particular, the counterpart of (6.13) is (cf. (4.7b)) 

8 = - B-l{%B+ & [ 1 - vy 1 - 9:)];]}, (6.19) 

where V is given by (6.144, and 

(6.20) 

The entire upper branch, from the pitchfork bifurcation at @ = 1 and & = 0 to the 
turning point, is stable if 

% > (1-9+)-1[-+( l+B+ A + B + C  ) ] 4 = vTp+. 
1-9+ A + C  

(6.21) 

The values of E/P* at which %? = vTp+ (so that all of S+ except for points between the 
subcritical bifurcation and the turning point is stable) and 2, = A+ (for which the 
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subcritical bifurcation becomes supercritical and the turning point disappears) are 
plotted in figure 6. For pure capillary waves (a = 1) all of R, is unstable for 
e/P* > 0.373, all of the upper branch of S+ is stable for e/P* > 0.750, the turning point 
of R, disappears at el,& = I .55, and the turning point of S+ disappears at e/p* = 6.99. 

Turning to the coupled-mode solutions, we let &, = k2 = 0 in (6.8a, b), and solve for 

€ E €l+8z = -(A+B+C)-l(g+%) (F2> 0) (6.22~) 

and 
1 -Vz + 2(A - B- C) V9.B - B2€2 

9 2  = (€, - g2)2 = 
( A  - C )  (A  - 2B - C )  

(6.22b) 

The straight line (6.22a), which corresponds to that of (5.1 c) after the re-scaling (6.5) 
and the translation W, terminates at the intersections with R, at 
€ = 9 and S,  at 9 = 0. 

The characteristic equation for small perturbations about the solution (6.22) is 

h2+2bA+c = 0 (6.23) 

where b = 2(A-C)-'(A~-~C)€-(A+C)B~2+(A-C)(2A-B)Fz (6.24a) 

and c = 16(A - C)'(A + B+ C) (2B+ C - A )  8, €,(€,-8J2. (6.24b) 

The coefficients b and c are both negative, and hence CM is unstable, for all admissible 
€ i f k d % l  a n d a > + .  

The approximations (6.9), (6.13), (6.19) and (6.22a) are uniformly valid with respect 
to a and tend to (4.1 a), (4.5b), (4.7b) and (5.1 a), respectively, in the limit e/P* .J 0. But 
(6.12) and (6.24), which are based on the neglect of 8, and 8, in the evolution equations, 
are equivalent to their counterparts in $04 and 5 only at the transition ( A  = 0) points. 

I am indebted to J. P. Gollub and D. M. Henderson for discussion and references. 
This work was supported in part by the Division of Ocean Sciences of the National 
Science Foundation, NSF Grant OCE92-16397 and by the Office of Naval Research 
NO00 14-92-5- 11 7 1. 

Appendix A. Average Lagrangian 
The quartic truncation of the Lagrangian for the motion described by (2.1) is 

(MH $2) 
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Proceeding as in Miles (1984) and MH $3,  we pose the slowly varying amplitudes of 
the primary modes in the form 

7% = l [p , (~)coswt+q, (~)s inwt]  (n = 1,2), (A 8) 

7 = €Wt, (A 9) 

where I = 2 ~ ; k - l  tanh kd, c = ka, tanh kd. (A 10a, b) 

The amplitudes of the secondary modes, as determined from the requirement that the 
average Lagrangian be stationary with respect to their variations, then are given by (cf. 
Miles 1984, Appendix C) 

7, = (12/a,) (A ,  cos 2wt + B, sin 2 ~ r  + C,,) (n = 3,4 ,5) ,  (A 1 1 )  

(A 12a) 

Ci = *Zimn(PmPn +qm q n ) ,  (A 12b) 

where (At2 BJ = i*~",mn(PmPn -qm qniPm 4, + ~ n  qm), 

1 +k; l ;  
l+k212, ' 

- K , ,  K ,  ~ 

4k tanh kd 
- k ,  tanh k ,  d 

a =  (A 13a, b) 

The hypothesis that the primary modes dominate the secondary modes fails in the 
neighbourhood of Q3 = Q4 = 0 owing to the resonances between modes 1 and 3 
(k, = 2k, and w, = 2w,, corresponding to Wilton's ripples) and 2 and 4, which we 
exclude. Q5 is positive-definite, 

Substituting zo and 7, from (1. l ) ,  (A 8) and (A 1 1) into (A I), averaging L over a 27t 
interval of wt ,  invoking (A 10) and (A 12), and evaluating the modal coefficients a,, 
..., for the $, of (2.3) and (2.5), we obtain the average Lagrangian in the form 

( L )  = a, F W Y [ i ( L ' ,  4% -P, 4,) + m p , ,  431, (A 14) 

where, here and subsequently, n is summed only over 1 and 2,  the dots now imply 
differentiation with respect to the slow time T, 

H = &% P n  - 4,  s,) + iB7a(P; + q 3  +:A,&; + ( P i  + 4 3  

+@(PI qz-pz q J 2  + ; P m n ( ~ k & - q k  4:) (A 15) 
is a Hamiltonian for the slowly varying amplitudes, 

p, = p, = p = ( w - w W L ) / m  

is a measure of the frequency offset from (linear) resonance, 

(A 17a) 

(A 17b, c) 

eT2(2S-3T2) , cz = PY1 Q = 2- 
(1 + T 2 )  (3 - T') 

Pll = P2' = P = ;€ 
K3 *3  K5 0 5  

3 

cr = k2F,/( 1 + k"). 

We remark that (A 14)-(A 18)  are invariant under the interchange of the subscripts 1 
and 2. The deep-water limits (kd? 00) of (A 17) and (A IS) are given by ( 3 . 5 )  and (6.3). 
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The requirement (Hamilton's principle) that ( L )  be stationary with respect to 
independent variations of p ,  and q n  implies the canonical equations 

r j ,  = -aH/c?q,, 4, = aH/aP,,, (A 20a, b) 

from which (3.2) are derived through the introduction of dissipation. 

Appendix B. Dissipation (kd + 1) 
We hypothesize the dissipation function? 

D = a(e, + e,) + 9 + ~ ( e ' ) ,  9 = A",, em en (B 1 a, b) 

on the assumptions that A",,, el, e2 and 01-8, are O(e), as in $6.  It suffices for the 
determination of the A,, to consider the decay of free oscillations, for which w = o1 
(but note that the modulated frequency of q n  in (3 .1)  is W - C E O ~ , )  and (3.3h) reduces 
to 

Substituting (B 1) and (B 2)  into (3.11) and invoking e = e,+e,, we obtain 

H = A,,  e, en +iBr2. 

e = e,+e, = -2ae-49+O(e5), 

(B 2) 

(B 3 4  

(B 3b, 4 

(B 4) 

8, = 2 ~ e ,  + 2 ~ e ,  + o(E~),  6, = 2 ~ e ,  + 2 ~ e ,  + 0(e3). 

We construct an alternative expression for e through the mean energy equation, 

(dldt) ( E )  = -W), 
in which pE and pF are the energy and Rayleigh dissipation function per unit surface 
area for the free oscillations. Posing 

( E )  = k-'Fd(e+&), ( F )  = ask-112w3(e+F), (B 5a, b) 

(B 6) 

(B 7) 

9 = a ( p - 4 ) .  (B 8) 

(B 9)  

(B 10) 

wherein (by hypothesis) d and B are quadratic in el and e2, and invoking 

(dldt) (e + 8) = ~ ( e -  4aB), 

e = - 2a(e + 9) + 4ab. 

where d€/d.r = d = -4ad follows from the first approximation to (B 3a), 2 = -2ae, 
we obtain 

Comparison with (B 3a)  then yields 

Proceeding as in Miles (1976) and invoking kd % 1 and the expansion (cf. (2.1)) 

4 = d n ( t >  @n(x)e"' 

E = i k m n  d m  d n  + +[Smn(g + Tki) - iTbj lmn 7j 711 7, 7%) 

(which follows from V*$ = 0 and kd 9 1) for the velocity potential, we obtain 

where 

The dn, calculated as in $2 of Miles (1976) with kd $ 1, are given by 

$1 = k-lq, + 2-'(r3 ql - yl q3 - 7, j5) + k[&( 4, + 4(.\/2 - 1)  7; 4, + 2 - 1 ~ ~  'la q2], 
(B 12a) 

f The symbols 9?, 8 and 9 now have different definitions vis-a-vis $6. 
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$3 = +kk-'q3 - 2 - i ~ ~  il, q55 = 2-%(k-'f5 - ql 4, - 7, d1), (B 12b, c) 

and $, and $4 by (B 124 b) with the subscripts (1,2,3) replaced by (2,1,4), 
respectively. 

The Rayleigh dissipation function, on the assumptions of an uncontaminated free 
surface and kd 5> 1 ,  may be approximated by (Lamb 1932, $329(7), divided by pS) 

where v is the kinematic viscosity. Invoking (B 9) and truncating at fourth order, we 
obtain 

(B 14) 

where 
F = 24km kn ' m n  + Elm, ~ l +  Ejlmn ~j rll4rn $n, 

Ejlmn = $(km +kn) (@j @t xmn), Etm, = (@i X m J i  Xmla @mxy @my- @ m m  @nyy- 
(B 15a-b) 

The dominant components of the means of (B 10) and (B 14) are 

(E)bom = ~ k ( $ ~ + q 5 ~ ) + $ ( g + T k 2 ) ( 9 ~ + 9 ~ )  = +kk-11'(02+wl)e (B 1 6 ~ )  

and (F)aom = 2vk3(& + &) = 2vk2(w2F/k) e, (B 16b) 

which, after invoking w2 = wf and S = 2vk2/w (linear Stokes damping), correspond 
to the anticipated terms (in e) in (B 5a,  b). It then follows from (B 5), (B 8), 
and g + Tki  = K,  d / k ,  where K ,  is given by (A 13 b), that 

9 = $ak- ' ( l~ ) -~  ([(km kn-k') kmn +Ezm, 71 +Ejlmn 7ji 7ZI $m $n 

-(I -aln-a2n)kwaK, 7; +iTk2djjlmn 7j ql7m 7,). (B 17) 

Substituting (B 12) into (B 17), we obtain (after a straightforward but non-trivial 
reduction) 

- k[2/2(714143 + 9 2  4 2  4 4 )  + 95 41 4 2  ++ 2/2(71 4 2  + 72 41) 451 

- k ~ r ,  il + 7, j 2 ) 2  + + T ~ w ~ ; z  + 7;) + 29: 73). (B 18) 

The amplitudes of the secondary modes, as determined from the requirement that the 
average Lagrangian be stationary with respect to their variations, are given by (cf. MH, 
Appendix C) 

y n  = (F/al)  ( A ,  cos 2wt+ Bn sin 2wt + Cn) (n = 3,4,5), (B 19) 
where ('1, BJ = 9:' 'Imn(PmPn -4m qn,Prn qn +Pn qm) (B 20a) 

(B 20 b) 

Combining (3.1) and (B 20) in (B l 8 ) ,  averaging over wt,  invoking k d $  1 ,  and 
comparing the result for 9 with the quartic terms in (B 3 ) ,  we obtain 

A,, = A,, = A = as(-1 --~;~-$2;'+2Q;'+3r), 

A,, = C = a s [ - 1 - 2 ~ ; ~ + ( 3 - 2 2 / 2 ) 0 ; ~ + $ ~ ] ,  j = a 6 ( 2 + 2 ~ ; ~ - & ) .  

c -1 and 1 - 4K2 %mn(PmPn+qmqn). 

- - * 
(B 21 a) 

(B 21 b, c) 

- I 
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